A self-absorbed look into how
Ted Adelson and his ideas have
enriched my scientific journey

Also how to generate informative line drawings from photographs

Fredo Durand, MIT




My main connection to Ted
| wasn’t lucky enough to be his PhD student




My main connection to Ted
But we have the same birthday (March 30)
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After my PhD, 1 wanted to simulate visual adaptation
| quickly found that Ted’s work on rods was instrumental

 And learned that we must take into account perception of real scene as well
as perception of an image

Interactive Tone Mapping
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! Abstract A background that is briefly flashed to a dark-adapted eye saturates the rod system. This N
b ) transient saturation occurs with backgrounds that are as much as 2log units dimmer than those ) Eile

producing saturation under steady viewing. Rod threshold is highest when the background is first turned
\ -

Scene

13 on, and falls as adaptation proceeds. The nature of the adaptive processes are studied by presenting

' flashed backgrounds on pre-adapting fields. The data can be interpreted in terms of two adaptive
processes: the first is multiplicative, and occurs rapidly; the second is subtractive, and occurs more
slowly.
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bathroom. Bottom: Bathroom after chromatic adaptation (1.8 logcd/ m2).



After my PhD, 1 wanted to simulate visual adaptation
| quickly found that Ted’s work on rods was instrumental

 And learned that we must take into account perception of real scene as well
as perception of an image
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| attended Ted’s material appearance seminar

A transformative experience that inspired more than my work on materials
 The wonders of exploring what questions may hide

* |n research, finding a good question is more than half of the work
* |nterdisciplinary work is important and exciting

e Thereis a lot we can learn from art

Statistical Acquisition of Texture Appearance

Texture Transfer Using Geometry Correlation Experimental Analysis of BRDF Models

Addy Ngan Frédo Durand '
Computer Science and Artificial Intelligence Laboratory Tom Mertens . J an.Kautz Jiawen Chen Philippe B.ekae.rt Frédo Durand
Massachusetts Institute of Technology CSAIL - MITT Univer Sity College CSAIL - MIT Hasselt Umver51ty CSAIL - MIT Addy Ngan, Frédo Durand T and Wojciech Matusik
London EDM* — tUL®

MIT CSAIL MERL

) ) o o , , ) Figure 1: The appearance of two texture-mapped models is transferred to a target model (the Bunny). We analyze the geometric features of the
Figure 11: Comparing approximations to the measured materials knitwear-1 and green-knitwear. First column: single texture . . . . .
modulated by acquired BRDF, second column: light-varying textures from top view, and third column: our reconstruction. source and their correlation with texture. The source texture is transferred to the target mesh based on the correlation.



| was emboldened to explore how properties in

Images relate to our perception of the world
Class The Art and Science of Depiction

* https://people.csail.mit.edu/fredo/ArtAndScienceOfDepiction/

* | read a lot of design and art+science books. The majority of them showed the
checkerboard illusion

4.209
The Art and Science of Depiction

Frédo Durand and Julie Dorsey
Spring 2001 MW 11-12:30 room 2-142

3-0-9 H-Level grad credit

Overview

The scientific, perceptual and artistic principles behind image making. Topics include the relationship between pictorial techniques and the human visual system; the intrinsic limitations of 2D representations and
their possible compensations; and the technical issues involved in depiction: e.g. projection, denotation (choice of primitives - lines, points or regions) and tonal conventions.

The following talk highlights the motivations behind this class, from a computer graphics point of view.

And here is a more recent (and different) version given at Stanford (1 slide per page or 6 slides per page)

Audience
Open to undergraduate and graduate students.
Enrollment limited to 20.
Anyone interested in pictures (e.g. art history, visual arts, architecture, human perception, computer vision, computer graphics).
No prerequisite.
Format

This is a 12 unit course, including 3 hours of class per week. Except for the first 3 weeks where only lectures will be given, the Monday session will consist of a formal lecture, while the Wednesday session will be
devoted to student presentations about specific subjects (see below) and a 30 minutes discussion of the week's reading.



https://people.csail.mit.edu/fredo/ArtAndScienceOfDepiction/

| argued that making images is an inverse of

Inverse problem and an optimization

Inspired in large part by Hermann von Helmholz

* And of course | had to include (questionably plagiarized) checkerboard

IHlusions

An Invitation to Discuss Computer Depiction

Frédo Durand

Laboratory for Computer Science, MIT*

Abstract

This paper draws from art history and perception to place
computer depiction in the broader context of picture produc-
tion. It highlights the often underestimated complexity of
the interactions between features in the picture and features
of the represented scene. Depiction is not always a unidi-
rectional projection from a 3D scene to a 2D picture, but in-
volves much feedback and influence from the picture space
to the object space. Depiction can be seen as a pre-existing
3D reality projected onto 2D, but also as a 2D pictorial repre-
sentation that is superficially compatible with an hypothetic
3D scene. We show that depiction is essentially an optimiza-
tion problem, producing the best picture given goals and con-
straints.

There is a variety of picture production purposes, resulting in
very different contexts and specificities. We show the com-
plexity and richness of depiction, and the discussion is in-
dependent of any implementation. Our main goal is to intro-
duce a vocabulary that will make a principled discussion pos-
sible, and to raise questions rather than providing answers.
We review and build upon visual arts and perception litera-
ture. We outline important issues of depiction that we use to
discuss the field of non-photorealistic rendering, and more
generally, computer depiction.

Computer graphics has long been defined as a quest to
achieve photorealism. As it gets closer to this grail, the
field realizes that there is more to images than realism
alone. Non-photorealistic pictures can be more effective

. . . .
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(a) (b)

Figure 1: (a) Mirror illusion. The size of our reflection on the sur
face of a mirror is half our size. (b) In this picture, the white cell
in the shadow of the cylinder have the same grey level as the blac
cells in full light. After an illusion by Ted Adelson.
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Reality

Figure 6: Depiction as the inverse of an inverse problem.



Then | had to choose a job in 2002
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Photographic style transfer

Based on local texture energy

Early vision and texture perceptlon i e Do
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Two-scale Tone Management for Photographic Look

Soonmin Bae Sylvain Paris Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massuchusetts Institute of Technology




Basis for Adobe Photoshop & Lightroom tone adjustments

A Multiresolution Spline With Application to
Image Mosaics

PETER J. BURT and EDWARD H. ADELSON
RCA David Sarnoff Research Center

We define a multiresolution spline technique for combining two or more images into a larger image
mosaic. In this procedure, the images to be splined are first decomposed into a set of band-pass
filtered component images. Next, the component images in each spatial frequency band are assembled
into a corresponding band-pass mosaic. In this step, component images are joined using a weighted
average within a transition zone which is proportional in size to the wave lengths represented in the
band. Finally, these band-pass mosaic images are summed to obtain the desired image mosaic. In this
way, the spline is matched to the scale of features within the images themselves. When coarse features
occur near borders, these are blended gradually over a relatively large distance without blurring or
otherwise degrading finer image details in the neighborhood of the border.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics): Picture/Image Generation; 1.4.3
[Image Processing]: Enhancement

General Terms: Algorithms

Additional Key Words and Phrases: Image mosaics, photomosaics, splines, pyramid algorithms,
multiresolution analysis, frequency analysis, fast algorithms

Fast Local Laplacian Filters: Theory and Applications

MATHIEU AUBRY

INRIA / ENS

and

SYLVAIN PARIS

Adobe

and

SAMUEL W. HASINOFF
Google Inc.

and

JAN KAUTZ

University College London
and

FREDO DURAND
Massachusetts Institute of Technology

Multi-scale manipulations are central to image editing but they are also
prone to halos. Achieving artifact-free results requires sophisticated edge-
aware techni and careful p tuning. These shortcomings were
recently addressed by the local Laplacian filters, which can achieve a broad
range of effects using standard Laplacian pyramids. However, these filters
are slow to evaluate and their relationship to other approaches is unclear.
In this paper, we show that they are closely related to anisotropic diffusion
and to bilateral filtering. Our study also leads to a variant of the bilateral
filter that produces cleaner edges while retaining its speed. Building upon
this result, we describe an acceleration scheme for local Laplacian filters on
gray-scale images that yields speed-ups on the order of 50x. Finally, we
demonstrate how to use local Laplacian filters to alter the distribution of
gradients in an image. We illustrate this property with a robust algorithm
for photographic style transfer.

Paris et al. [2011] described the local Laplacian filters that address
these shortcomings and produce high-quality results over a wide
range of parameters. However, while these filters achieve similar
effects to existing edge-aware filters, their relationship to other ap-
proaches is unclear. Further, these filters are prohibitively slow in
their original form. Paris and colleagues [2011] mitigate this issue
with a heuristic approximation but its properties and accuracy are
unknown, and even so, it remains slow.

In this paper, we study these filters to gain a better understand-
ing of their behavior. First, we rewrite them as the averaging at each
scale of the signal variations in the local neighborhood around each
pixel. From this formulation, we show that local Laplacian filters
can be interpreted as a multi-scale version of anisotropic diffusion,
and that they are closely related to bilateral filtering, the main dif-
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Motion magnification

|||i|- Video Magnification WW

CSAIL

Motion Magnification o i i o

Ce Liu
Antonio Torralba
William T. Freeman

time

time

Fredo Durand
(b) Magnified (c) Spatiotemporal I7 slices
2
E d Wd rd H ™ A d e l SO n An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the

original video sequence. (b) The same four frames with the subject's pulse signal amplified. (c) A vertical scan line from the
input (top) and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In
the input sequence the signal is imperceptible, but in the magnified sequence the variation is clear.

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laborator
L EEEH

Many seemingly static scenes contain subtle changes that are invisible to the naked human eye. However, it is possible to pull out these small
changes from videos through the use of algorithms we have developed. We give a way to visualize these small changes by amplifying them and
we present algorithms to pull out interesting signals from these videos, such as the human pulse, sound from vibrating objects and the motion of

SIGGRAPH2005

The 32nd International Conference on Computer Graphics and Interactive Techniques i ieaee ] e




A lot of my graphics and computational photography

work has to do with the Plenoptic function
and the insight that light field, space time, etc. are all similar

Wavefront coding in the
space of light rays

New paradigm for imaging systems

W. Thomas Cathey and Edward R. Dowski

We describe a new paradigm for designing hybrid imaging systems. These imaging systems use optics
with a special aspheric surface to code the image so that the point-spread function or the modulation
transfer function has specified characteristics. Signal processing then decodes the detected image. The
coding can be done so that the depth of focus can be extended. This allows the manufacturing tolerance
to be reduced, focus-related aberrations to be controlled, and imaging systems to be constructed with only
one optical element plus some signal processing.

OCIS codes: 080.3620, 110.0110, 110.2990, 110.0180, 110.4850, 180.0180.

Plenoptic function insight

The Plenoptic Function and
the Elements of Early Vision

Edward H. Adelson and
James R. Bergen

P

P(6,0,A.,V.V,.V).

The image information available from a single viewing
position is defined by the pencil of light rays passing through
the pupil. The rays may be parameterized in angular coordinates
or in Cartesian coordinates. The Cartesian approach is
commonly used in machine vision and computer graphics, but
the angular approach can more easily represent the full sphere of

Same coding
but In space-time

What are the elements of early vision? This question
might be taken to mean, What are the fundamental atoms
of vision?—and might be variously answered in terms of
such candidate structures as edges, peaks, corners, and so
on. In this chapter we adopt a rather different point of
view and ask the question, What are the fundamental
substances of vision? This distinction is important because
we wish to focus on the first steps in extraction of visual
information. At this level it is premature to talk about
discrete objects, even such simple ones as edges and
corners.

Motion-Invariant Photography

Anat Levin  Peter Sand Taeg Sang Cho  Frédo Durand  William T. Freeman

Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory

Figure 1: Left: Blurred motion captured by a static camera. Center: The same scene captured by a camera with a specially designed motion
that causes both the static and dynamic regions to blur identically. Right: The blur from the center image can be removed independently of
motion via deconvolution of the entire image with a single known point spread function.



| was recently asked what the biggest photography
Innovations were since the advent of digital
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REPONSES GRAND FORMAT

FREDO DURAND

=» 1973 : Naissance a L'Hay-les-Roses
=»1981: Premier appareil photo offert
par son peére, un Kodak Retinette
=» 1993 : Entre a 'ENS rue d’'Uim
=»1999: Doctorat a I'INRIA Grenoble

avec Claude Puech et George Drettakis
= 2002 : Professeur au Massachusetts Insti-
tute of Technology (Etats-Unis)

eu de photographes ont en-
tendu prononcer son nom,
ils sont pourtant des millions
a utiliser quotidiennement
le fruit de ses travaux. Frédo
Durand, professeur au MIT
(Massachusetts Institute of
Technology a Cambridge,
Etats-Unis) est depuis 20 ans
au centre des multiples développements
que l'on trouve au coeur de Photoshop,
Lightroom, Camera Raw, mais aussi dans
le firmware de nos appareils photos, dans
les systémes embarqués et les apps de nos
smartphones. A la fois acteur et témoin pri-
vilégié de I’évolution des technologies pho-
tographiques, ce Frangais de 49 ans — pour
ne rien gater photographe fervent et lecteur
de Réponses Photo — nous est donc apparu
comme l'interlocuteur idéal pour jauger
le chemin parcouru ces trente dernieres
années, depuis la naissance de notre maga-
zine, et pour nous projeter dans I'avenir de
la photographie, tant d’'un point de vue tech-
nique que pratique. Propos recueillis par Yann Garret

28 Réponses PHOTO » n°348 avril 2022

Comment votre parcours scientifique
a-t-il croisé la photographie ?

J'ai toujours été fasciné par I'image et j'ai
fait mon doctorat sur 'image de synthése
3D et la simulation photoréaliste de I’éclai-
rage al'université de Grenoble. Ces travaux
sur les images virtuelles m’ont naturelle-
ment amené a me poser des questions sur
les images que prennent les photographes
dans le monde réel et des questions sur la
perception visuelle. J'ai décidé de créer un
cours, “The art and science of depiction”(1)
pour explorer l'interaction entre synthése
d’images, arts visuels (dont la photo) et per-
ception humaine.

Il'y a 30 ans, quel était I'état

de P'art en matiére de technologies
photographiques ?

ATépoque, 'autofocus commengait 4 domi-
ner les reflex, et la stabilisation d’'image et
la fluorite révolutionnaient les téléobjectifs.
Les objectifs zoom avaient encore mauvaise
réputation chez les professionnels. La pho-
tographie de qualité restait technique, méme
si les automatismes tels que I'autofocus et
I'exposition commencaient a grandement
aider les amateurs. Kodak venait de sortir
le premier reflex numérique commercial, le
DCS 100, une énorme brique avec une défi-
nition de 1,3 mégapixel qui cottait 30000 $
tout de méme, destiné a accélérer la trans-
mission des photos pour les photojourna-
listes. A ce prix-1a, méme pas d’écran !

Au début des années 1990, les ordinateurs
accéléraient encore de fagon continue, sui-
vant la fameuse loi de Moore, et leur capa-
cité de calcul doublait tous les deux ans.
Les batterie ion-lithium venaient de sortir
(Sony, 1991), et la plupart des écrans étaient
encore de gros CRT basse résolution avec
une densité de 72 dpi. L'ordinateur portable
Macintosh PowerBook avait un processeur
a 25 MHz, 8 Mo de RAM, jusqu’a 80 Mo
de disque dur (le poids d’'une image RAW
moderne !) et un écran LCD monochrome
de 640x400. Les premiéres imprimantes a
jet d’encre couleur 300 dpi venait de sortir.
Elles utilisaient 4 encres (CMYK) et étaient
loin d’offrir une qualité photographique.

Et puis vient le tournant

de I’'an 2000...

Oui, c’est a ce moment-la que la réalité
commerciale des appareils numériques se
concrétise. Le Nikon D1, en1999, a été le
premier appareil numérique a connaitre
un véritable usage chez les pros. J'ai eu la

(1) https:/ / people.csail. mit.edu /fredo/
ArtAndScienceOfDepiction/

chance de travailler avec un D1 et c’est vrai-
ment I'appareil qui m’a donné le goiit de la
photo numérique. Une mention aussi pour
le Canon D30 en 2000, qui a lancé les reflex
numériques pour le plus grand public, mal-
gré un prix assez élevé.

Et puis les premiers téléphones portables
avec une caméra ont été lancés en 2000
par Samsung et Sharp (0,1 mégapixel seu-
lement !). Mais je dirais que c’est avec le No-
kia N95 que la qualité de la caméra (5 MP)
et de I'écran ainsi que I'accélération des ré-
seaux avec la 3,5G, ont vraiment rendu les
téléphones portables attractifs pour la photo.
Je ne surprendrai personne aujourd’hui en
disant que I'entrée des portables dans le
monde de la photographie est '’événement
le plus significatif depuis I'invention du nu-
mérique. L'industrie ne sera plus jamais la
méme. Les téléphones portables ont aussi
accéléré la révolution computationnelle car
leurs contraintes physiques rendent la créa-
tion d’optique et de capteurs de qualité a
des cofits acceptables tres difficile.

Il est aussi intéressant de noter qu’il y a
trente ans, le monde de la vidéo et de la
photo étaient complétement séparés et
demandaient des appareils différents. En
2001, le compact Canon Pro 90 IS fut, je
crois, le premier a offrir de la vidéo en plus
des photos. Les reflex furent longs a suivre
car les capteurs chauffaient. C’est en 2008
que le D90 et surtout le Canon 5D Mark
II ont permis de capturer des vidéos HD
et commencé a révolutionner le monde de
la vidéo, en proposant une qualité d'image
qui jusque-la demandait un équipement qui
cottait plus de cent mille euros. C’est que
les capteurs de ces reflex étaient bien plus
gros que ceux des caméscopes méme haut
de gamme, ce qui permettait des images en
basse lumiere et des effets de profondeur
de champ jusque-la impossibles.

Depuis lors, peut-on parler

de progrés continus ?

Le Nikon D3s ,en 2009, a marqué pour moi
la fin, ou tout du moins le gros ralentisse-
ment, de 'amélioration des capteurs en

Titre Iégende

Tem aperorum quaeprae nobis dolup-
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Plenoptic/dual-pixel on-sensor autofocus
Biggest innovation since the beginning of digital photography

Single Lens Stereo with a Plenoptic Camera

Edward H. Adelson and John Y.A. Wang

act— Ordinary cameras gh rea of
their lens aperture, and the light striking a given subregion
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Impact of plenoptic/dual-pixel on-sensor AF

Enables phase-based (~stereo) autofocus on sensor, without mirror
Made mirrorless competitive with DSLR S

* Can focus while recording a Video

 Can perform face/eye detection for AF because you have
access to the sensor

 Makes mechanical design much simpler (no need for mirror,
etc.) -> cheaper, more reliable

 Removing the mirror makes lens design easier (more space)
(e.g. Canon 24-70 f/2 was impossible before.)

o https://www.diyphotography.net/the-dslr-will-probably-die-are-
mirrorless-the-future-of-large-standalone-cameras/



https://www.diyphotography.net/the-dslr-will-probably-die-are-mirrorless-the-future-of-large-standalone-cameras/
https://www.diyphotography.net/the-dslr-will-probably-die-are-mirrorless-the-future-of-large-standalone-cameras/

Apparent Ridges

Started with an insight from Ted

* First, human perception is sensitive to the variation of shading,
and since shape perception is little affected by lighting and reflectance

modification, we should focus on normal variation.

 Second, view-dependent lines better convey smooth surfaces.

 From this we define view-dependent curvature, and apparent ridges as the
loci of points that maximize a view-dependent curvature.

screen

. . . /. At front facing parts of the object, the values are similar. As the o
Figure 4: The maximum view-dependent curvature at b’ is much  ject normal s away from the viewer, view-dependent curvature
, 5 < . becomes ch larger due to projection lew-dependent curvature
larger than at a uniquely because of projection.

object

(c)

Iransactions on Graphics, FProceedings of SIGGHAFH 2007



Apparent Ridges

Apparent Ridges for Line Drawing

Tilke Judd! Frédo Durand! Edward Adelson'?

I'MIT Computer Science and Artificial Intelligence Laboratory 2 MIT Dept. of Brain and Cognitive Sciences

Shaded View Contours Suggestive Contours Ridges & Valleys Apparent Ridges

Figure 1: The Bust model rendered with several different feature lines. We introduce apparent ridges on the right. They correspond to the
maxima of the normal variation with respect to the viewing plane. Note in particular the left side of the face (to the right) in the suggestive
contour drawing and the nose drawn with ridges and valleys.



15 years later, still competitive

Sure, state of the art with deep learning is better

Neural Contours: Learning to Draw Lines from 3D Shapes

Mohamed Nabail' Aaron Hertzmann? Evangelos Kalogerakis'

' University of Massachusetts Amherst

Difan Liu!
2 Adobe Research

e

Neural Contours

pix2pixHD

3D model Occluding Contours Apparent Ridges
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Figure 3: Our network architecture: the input 3D model is processed by a geometry branch operating on curvature features,
and an image-based branch operating on view-based representations. Their outputs are combined to create a line drawing,
which is in turn evaluated by a ranking module that helps determining optimal line drawing parameters.



15 years later, still competitive

State of the art with deep learning is better, but still relies on apparent ridges

Neural Contours: Learning to Draw Lines from 3D Shapes

Difan Liu? Mohamed Nabail' Aaron Hertzmann? Evangelos Kalogerakis'
1 University of Massachusetts Amherst 2 Adobe Research

input 3D model

P Sy

| s 5

t  8C e — :

i thresho -

: > |

- , i ol K, | R 4 :

- : radial curv. deriv. L =) :
: : s TR line drawing O s SR e
: : f : — = | i
! P _ i /4 \ g i
l ‘ ‘ N DA Gy : 1
: _ thresho f i o 5 X (] ; _ score |

: : . a :

j Al ! : L =0-95:
=l \ | ) Uy oo
| | o f : - L '
; il y | & A ‘ i
/iew dep. curv ma ' ' :

& viewpoint [ :
e Ll St R S i S il - it e e . ' : _ ‘
{ ' - 6 concat : ranking module f:
depth , ¥ N I SRR e v
an o
E muilll-scn]c i}
shaded mapsi—y . .
%{\— l‘,“d s = . convolutional front-end
k—/j Q ‘) residual block
(, I\ ( /) ;j B N 175 olutional back-end
- 01 . P 06: transpose convolutional back-enc
scale | scale6 ¢ ~ image translation branch = fully connected layer

Figure 3: Our network architecture: the input 3D model is processed by a geometry branch operating on curvature features,
and an image-based branch operating on view-based representations. Their outputs are combined to create a line drawing,
which is in turn evaluated by a ranking module that helps determining optimal line drawing parameters.

3D model Occluding Contours Apparent Ridges pix2pixHD Neural Contours



Apparent Ridges as inverse of inverse?

Additional data, /77~
emotion, etc. Ar<.

Figure 6: Depiction as the inverse of an inverse problem.



Apparent Ridges as inverse of inverse?

Requires Ted’s brain to provide insights

s

: )\
! : 3
o

Figure 6: Depiction as the inverse of an inverse problem.



Can we generate line drawings by optimizing the similarity
of the percept they elicit to the real percept?
Put human brains in an optimization inner loop?

Additional data /&>
emotion, etc. Hr<
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What if we replace the brain by an artificial bra
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Figure 6: Depiction as the inverse of an inverse problem.



Informative line drawings

Learning to generate line drawings that convey geometry and semantics

Caroline Chan Frédo Durand Phillip Isola
{cmchan, fredo, phillipi}@mit.edu
MIT

Figure 1. Given a set of photographs, our method is capable of making line drawings in different styles seen above. Our method only
requires unpaired data during training.



Goal: generate line drawing that can convey the

same 3D shape and somatic as an input photo
Without paired training data

Output line drawing
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compare prediction for shape (depth)
and semantics (CLIP) for photo & output drawing

Plus compare RGB, and a GAN loss on unpaired tra
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Approach: compare prediction for shape (depth)

and semantics (CLIP) for photo & output drawing
Plus compare RGB, and a GAN loss on unpaired training drawings

Semantics

— - E— eEn e e
- - '
—

- CLIP

a Gy(a) Appearance

Figure 2. Given a photograph a, our model trains network G 4 to
synthesize line drawing G 4 (a) via four main losses. Adversarial
style loss with discriminator D p encourages generated line draw-
ings to match the style of the training set. The CLIP, appearance,
and geometry losses enforce that the line drawing communicates
effective semantic, appearance, and geometry respectively.
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CycleGAN

Input




OpenSketch Cole et al







Try it!

https://huggingface.co/spaces/carolineec/informativedrawings

(% Hugging Face Q_ Search models, datasets, users... ¢ Models = Datasets Spaces
B Spaces: © carolineec informativedrawings @ ©like 73« Running
¢ App = Files and versions & Community

informative-drawings

Gradio Demo for line drawing generation.

input img output

version

O style1 style 2

« Solutions  Pricing ~=

LogIn

Sign Up

0.2s




Thank you Ted

Some of the things | have learned

Look for questions. Explore half-formed questions

Explore, experiment, in your head or with small models

Step back, is the big picture making sense

Don’t be afraid to work with people with more expertise than you in various areas
Multidisciplinary work keeps life interesting

Art matters

Trust your own visual system.

You don’t need a big research group to have impact

One piece of great work is more important than multiple good works
(quality not quantity)

Don’t let sponsors make your life difficult




